Modeling the Role of Mid-Wavelength Cones in Circadian Responses to Light

نویسندگان

  • Ouria Dkhissi-Benyahya
  • Claude Gronfier
  • Wena De Vanssay
  • Frederic Flamant
  • Howard M. Cooper
چکیده

Nonvisual responses to light, such as photic entrainment of the circadian clock, involve intrinsically light-sensitive melanopsin-expressing ganglion cells as well as rod and cone photoreceptors. However, previous studies have been unable to demonstrate a specific contribution of cones in the photic control of circadian responses to light. Using a mouse model that specifically lacks mid-wavelength (MW) cones we show that these photoreceptors play a significant role in light entrainment and in phase shifting of the circadian oscillator. The contribution of MW cones is mainly observed for light exposures of short duration and toward the longer wavelength region of the spectrum, consistent with the known properties of this opsin. Modeling the contributions of the various photoreceptors stresses the importance of considering the particular spectral, temporal, and irradiance response domains of the photopigments when assessing their role and contribution in circadian responses to light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cones are required for normal temporal responses to light of phase shifts and clock gene expression.

In mammals, non-visual responses to light involve intrinsically photosensitive melanopsin-expressing retinal ganglion cells (ipRGCs) that receive synaptic inputs from rod and cone photoreceptors. Several studies have shown that cones also play a role in light entrainment, photic responses of the suprachiasmatic nucleus (SCN), pupil constriction, and sleep induction. These studies suggest that c...

متن کامل

Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina

As the ear has dual functions for audition and balance, the eye has a dual role in detecting light for a wide range of behavioral and physiological functions separate from sight. These responses are driven primarily by stimulation of photosensitive retinal ganglion cells (pRGCs) that are most sensitive to short-wavelength ( approximately 480 nm) blue light and remain functional in the absence o...

متن کامل

Women with hereditary breast cancer predispositions should avoid using their smartphones, tablets and laptops at night

Breast cancer is the most common malignancy among women, both in the developed and developing countries. Women with mutations in the BRCA1 and BRCA2 genes have an increased risk of breast and ovarian cancers. Recent studies show that short-wavelength visible light disturb the secretion of melatonin and causes circadian rhythm disruption. We have previously studied the health effects of exposure...

متن کامل

Nocturnal light exposure impairs affective responses in a wavelength-dependent manner.

Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regul...

متن کامل

Ultraviolet Light Provides a Major Input to Non-Image-Forming Light Detection in Mice

The change in irradiance at dawn and dusk provides the primary cue for the entrainment of the mammalian circadian pacemaker. Irradiance detection has been ascribed largely to melanopsin-based phototransduction [1-5]. Here we examine the role of ultraviolet-sensitive (UVS) cones in the modulation of circadian behavior, sleep, and suprachiasmatic nucleus (SCN) electrical activity. UV light exposu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2007